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Spatially homogeneous cosmological models of Bianchi types VI, and VII, based on the Einstein-Cartan
theory are considered. Exact solutions are obtained for spinning matter content with a barometric equation
of state. They are axisymmetric due to the matter spin, and some are nonsingular.

I. INTRODUCTION

In recent years there has been a growing interest
in the Einstein-Cartan theory of spacetime,'”? in
which the intrinsic spin of matter is incorporated
as the source of the torsion of the spacetime mani-
fold. Cosmological models constructed on the ba-
sis of the Einstein-Cartan theory have given theo-
retical support to the Trautman conjecture that the
spin-spin interaction implicit in the theory might
avert the singularities that characterize general
relativity.* These have mostly been homogeneous
models of Bianchi type I.5"7 As Tafel has shown
that nonsingular models of Bianchi types I-VIII are
possible in the context of the Einstein-Cartan theo-
ry,? it is of interest to have available exact solu-
tions of all types of symmetry.

In this paper we consider spatially homogeneous
cosmological models characterized by the Bianchi
type VI, and VII, isometry groups, and diagonal
metrics. It is shown that the matter spin imposes
axial symmetry about the spin axis. In the VI,
case, exact solutions are obtained for dust and
ultrarelativistic matter, the first of which is non-
singular. As a result of axial symmetry, the type
VII, models reduce to those of type I, for which
various exact solutions are known. The structure
of the paper is as follows. In Sec. II an outline is
given of the Einstein-Cartan theory in terms of
differential forms (see Ref. 1 for details). In Sec.
III we set up the field equations for the particular
metrics considered, using the Ricci tensor expres-
sions obtained in the Appendix. Section IV contains
the solutions as well as a discussion of their basic
features.

II. EINSTEIN-CARTAN SPACETIME

In the Einstein-Cartan theory, spacetime is rep-
resented by a four-dimensional manifold endowed
with a linear connection with nonvanishing torsion
and a Lorentz metric. In terms of a set of basis
vector fields {e,}, @=0,1,2,3, the components
I'%, of the connection are determined by the co-
variant derivative formula

Voes=T7gqey , (2.1)

while the components 7%, of the torsion tensor are
given by

TaB), =I"a73-I‘°‘57 —Cs.ya . (2.2)
The Cg,“’s measure the extent to which the basis

tetrad {e,} is anholonomic, and they can be com-
puted on this basis of the relation

dw"’:..%CBy"waA wv (2.3)

for the exterior derivative of the one-forms w®,
which are dual to the basis vectors.
It follows from the above defining relations that

Do =dw* + W AP =T"=3T% Prw?  (2.4)

and

da®g+w*, Aw73=§z°‘e=§R°‘Byéw7A w?d, (2.5)
where

Wy =T%, w7 . (2.8)

Raﬁwa is the Riemann curvature tensor and D de-
notes covariant exterior derivative. The latter is
equal to the exterior derivative when operating on
scalar-valued forms, while on tensor-valued zero-
forms it gives their covariant derivative.

Compatibility between the differential and metric
structures of the Einstein-Cartan manifold is ob-
tained by demanding that the metric field be covar-
iantly constant, i.e., by

Dgaﬂzdga8+wo¢8+w5a =Oy (2-7)
where
We g =gogu wus' : (28)

Building from the completely antisymmetric ten-
SOT Mygys = |detgag|/2E g5, With Egy,,=1, one can
construct the complete set of forms

- S -1 v
Nagy Nagys@W 5, Nap= 2@ A Ragy
1.8
Ny =3 W N Ryp

and (2.9)



20 BIANCHI VI,, VII, COSMOLOGICAL MODELS WITH SPIN... 3005

in terms of which the Einstein-Cartan field equa-
tions take the concise form

%nasy AQEY =—t,, (2.10)
DnaB=S°'5. (2.11)

Here, {, is the stress-energy density three-form,
and S,z =~-S8, is the spin density two-form. The
units chosen are such that 87G=1=C.

In component form, the field equations read

R%— 30%R=1%, (2.12)

Taﬂ.y - G‘XBT“’W - GayTuBu =sa5.y 3 (2.13)
where

ngt?y =ty, 7,5”.5=5up. (2.14)

It should be noted that, in general, the Ricci
tensor R, is not symmetric, since the geometric
structure imposed on the spacetime manifold does
not demand it. .

The field equations, combined with the Bianchi
identities,

DT =% AP, D% =0, (2.15)

give rise to conservation equations for the stress-
energy and spin densities, which are

Diy=n(T" 4, t% =5 5* 5, R o) (2.16)
and

Dsyg=tg N Wy — 1y A Wg, , (2.17)
respectively.

1II. FIELD EQUATIONS

Assuming a classical description of spin, i.e.,
the decomposition of the spin tensor S“BY as

saBy =7',‘aoﬂy ’
with (3.1)
‘70151'46 =0 ’

where #* is the fluid velocity, with «®u,=~1, one
finds from the spin-torsion equation (2.13) that

Tagy =Sasy N (3.2)
while the spin-conservation equation (2.17) yields
tc(B— tBOL =V”(up0’8d). (3.3)

In the case of a perfect fluid, the stress-energy
tensor {5 can be written in the form

taB=_hauB +pga6’ (3-4)

where 7, is the enthalpy density vector and p is
the isotropic pressure. Thus, in this case (3.3)
implies that

by ==(p+pluy— V(o )u’, (3.5)

so that (3.4) becomes
typ = (p+p)utgug +Dpgup+ VW 0y, ) ug, (3.6)

where p=tmsu°‘uB is the energy density in the rest
frame of matter.

We now assume that a perfect fluid of the above
type is comoving in a spatially homogeneous uni-
verse. The manifold of such a spacetime is invari-
ant under a three-parameter group of isometries,
which generates spacelike three-dimensional hy-
persurfaces. Let the set of one-forms {o*}, ¢
=1,2,3, span these hypersurfaces. Then

do'=3D,to! A o, 8.7

where the D,k"s are the structure constants of the
isometry group.
Taking

dot=02Ao®,
do?=ec'A ¢®, (3.8)
do® =0,

one has a Bianchi type VI, or VII, group, for e=1
or - 1, respectively.®

We assume that the metric is diagonal in the in-
variant basis, so that the line element has the form

ds? = ~dt? ; a%(t)o' ® o' + b (t)02 ® 02

+c2(H)*®a%. (3.9)

Then an orthonormal basis is obtainable by letting
W’ =dt,

= aot,

w?=po?,

(3.10)

w=co?,

so that
ds? =ngew™ ®w®, (3.11)

where 7n,g is the Minkowski metric.
Next, we take the matter spin to be aligned along
the ¢® direction, which means that

T =T, w' A W2=0,w' A w2 =25 A w2, T'=0
(3.12)

where s=s(f). ,
It follows from (3.6) that

t.p =diag(p, p, p, p) (3.13)

and, using the expressions for the Ricci tensor
components obtained in the Appendix, the field
equations take the form
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=Ry, = (Inabc) g0+ [(In@) o + [(Ind) 4 ]2
+ [(Inc) 42 - 2s%==3(p +3p),
Ry, =(Ina) g0+ [(Ine) ,J? + (In@) 4 (Inbc)
4_ 4
+ -;71%-2- =z(p-p),
Ry, = (Ind) 40+ [(Ind) ] + (Ind) y(Inac) ,  (3.14)
4_ g4
+ gz = o),
Ryg=(Inc) g + [(Inc) 4 ] + (Inc) 4(Inda) ,

(a? +eb?)?
SaTE =z(p-p),

Ry, =-0(Instc) ,=0=s(lnsa?c) ,=R,,,

where a ,=da/dt, etc.

Equations (3.14) are not all independent, but are
connected via the conservation equations for mass-
energy and spin. From the projection of (2.16)
along u“ we obtain

wVup+(p+ p)Vau® =0, (3.15)
or, using Eq. (A3) of the Appendix,

p,o+(p+p)inabde) ,=0. (3.16)
Similarly, (3.3) and (3.13) yield

Vo (1%0,,) =0, ’ (3.17)
or

s(Insabc) 4=0 (3.18)

IV. SOLUTIONS

The last of the field equations (3.14) together
with (3.18) imply that

- _So_
abc ’ .1)

where s, is constant, and
a=b. (4.2)

The last relation shows that our models become
necessarily axially symmetric, owing to the pres-
ence of the spin,

A. Bianchi VII; models (e =-1)

In this case, axial symmetry implies local rota-
tional symmetry, and the models are also invari-
ant under the Bianchi I group which acts transi-
tively on the hypersurfaces of homogeneity, which
are flat.'® This is demonstrated by writing the
metric in the form

ds?=di* +a?(* ® o' +02®02)+c20° ® 0%, (4.3)

and then choosing

o' =cos®dxt +sinadx?,
0% =—sindx' +cosPdat, (4.4)
®=di®,
in accord with (3.8) for e=- 1. Then (4.3) becomes
ds®=-dt® + a®[(dx*)? +(dx?)?] + c2(d+?)?. (4.5)
The f_ield equations become
2(1na)f' =a*c?(p-p)=2(Inc)”,

(In@)’' ]2 +2(Ina)/(Inc)’ +s,2 = a*c?p,
o p

(4.6)

where the prime denotes differentiation with re-
spect to ¢’ with d¢=a?cdt’, and they have been in-
tegrated by Kopczynski® for the case of dust, and
by Kuchowicz®7 for other barometric equations of
state, where p=yp, with y a constant. Raychaud-
huri!! has given a class of solutions when a source-
free magnetic field is also present. We quote the
results of Kopczynski and Kuchowicz for some
representative values of y for later reference.

The first of (4.6) implies that

(In@)’ - (Inc)’=a constant=A , 4.7
while from (3.16) we obtain

PR31*Y)=3a constant =M,

with

Ri3=al¢c. (4.8)
Then the second of (4.6) yields

(R 4)%R*+3s,2 = A2=3MR31"7) | 4.9)

which is solved to give the following:

1)

M 35,2 = A2
3_ oM > )
R=—g U+~

when y =0. When A =0, this reduces to the Traut-
man dust model.*

(i1)

R(R% - a?)/2 1 a2 cosh™ (R/a)=2VM/3 t,
when y=3. Here a?=(3s2- A%)/3M.

(iii) When y=1, R®=KY2{, unless K =3M - 3s.?
+A*=0, in which case R® is constant, and the uni-
verse contracts along the direction of the spin,
while it expands in the transverse directions.

The basic feature of these solutions is that, at
least in cases (i) and (ii), the singularity at {=0
which plagues the corresponding general relativity
models is avoided.

B. Bianchi VI, (e=1)
Now the field equations (3.14) become

2(Ina)”=(1-y)M(a?c)"? =2(Inc)” - 4a*,
(4.10a)
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[(ine)’]? +2(In@)'(Inc)’ + 5,2 — @*=M(a?c)™7,
(4.10b)

where a barometric equation of state is assumed
and the notation is that employed in the VII, models
above.

For y =0, the dust model, we were able to obtain
only a particular solution of (4.10). Assuming ¢
=La", with L and » constant, one finds that the
first of (4.10) is satisfied for L=4/M, n=2. As M
is arbitrary, one can set M =4 so that (4.10b) be-
comes

82

1
(@)= —5 - +o5 - (4.11)
Its solution gives
2
Ri=a?c=a*=Mt?+ 4s, . (4.12)

5M

For y=1, (4.10a) imples that (Ina)’ =a constant,
which we set equal to unity for convenience. Then
(4.10b) reads

2(Inc)’ =a*+M-s,2 -1 (4.13)
or

a (Inc)=7+ M= -1

2 —
dar 47 ’
Solving the last equation, one obtains

c=TWs0" D 2 exp (1%/2),

27=a?,

(4.14)

(4.15)
so that the line element becomes
ds?= TW-50>1/2 exp(12) (=dr 2 + ¢* ® 0°)

+27(c* ® 0ot + 02 ®0?). (4.16)

It is a general feature of the solutions of the Ein-
stein-Cartan equations that they reduce to solutions
of the general relativity equations when the torsion
vanishes. Thus Eqs. (4.12) and (4.16) with s,=0
give the metric coefficients of general-relativistic
Bianchi VI, models. The latter have been obtained
by Ellis and Mac Callum.™

The models presented above are symmetric about
the spin axis. This feature was determined by the
spin itself, in contrast with the corresponding gen-
eral-relativistic models, where axial symmetry is
usually imposed in order to facilitate the solution
of the field equations.

The most important characteristic of these solu-
tions, however, is the nonsingular nature of the
dust models. The VI, model has a minimum radius
R min = (£ 5,/ M)"/3 which is slightly smaller than the
Trautman model’s R ., = (s,2/M)Y3~1 cm if the uni-
verse contains ~10% baryons. This value of R .y,
although a very small size for the universe, is very
large compared with the Planck length L*=1.6
X107% c¢m at which quantum fluctuations are sup-

posed to cause the breakdown of the validity of gen-
eral relativity (GR). For times ¢>s,~107® sec,
on the other hand, the dust models coincide with the
corresponding GR models, which shows, according
to Trautman,? that torsion will have hardly any ef-
fect on the hadronic and later phases of develop-
ment of the universe.

It should be noted, however, that spin was not
able to avert the singularities of the ultrarelativ-
istic models. If these models represent a better
approximation to the dense stages of the universe
than the corresponding dust ones, then the above
solutions provide an indication that the introduction
of torsion into cosmology cannot solve the problem
of the initial singularity.
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APPENDIX

Using Eqs. (3.8) and (3.10) we find °

: a
dw'=(na) WA+ — w?A w3
»0 bC ’

dwzz(lnb).ow"/\ w?+ —g—% WA w?, (A1)

do® =(Inc)yw® A w?,

According to (3.11), the w® are orthonormal. Then
(2.7) implies that

Wap == Wpy == Wgy =Ly WV (a2)

Using (A2) and the fact that the only nonvanishing
component of the torsion tensor is, according to
(3.12), 7°,,=2s, we find from the structure equa-
tion (2.4) that the only nonvanishing Ricci rotation
coefficients are

T = (In@) 5, Ty =(Ind),,, 1—;303 =(Inc) o,

a + eb
2bc 2ac

r _(a b)
213~ \9p¢ -e 2ac

Tha=8=T54=Ts0,

r321=r312= =B,

(A3)

1]

A,

and those obtainable from the above using (A2).
Substitution of (A3) into (A2) yields

0 1 2,1 1 _ -

o’ =(In@) (w' - sw?=w!,, w,=-s0®+ AW’ =-w?,
0 — 1 2 _ .2 = 2 _ 3

W% =sw!+(Ind) qw? =w?, w'=-Bw?=-u*, (A4)
0 _ — (3 2 - 1.

W% =(In¢) o =, w?=-Bw'=-0%.

The second of the structure equations, i.e., (2.5)
along with (A1) and (A4), gives the following ex-
pressions for the curvature two-form:
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Q% = {(ln@) g, + [(In@) 4 ]* - s2} & A @! = s(Insb?) & A W2 — s(A + %) W' A WP

s [—b‘% (Ina) - A(lnb) o - B(lnc)'o] 0? AW,

Q% = {(Ind) oo + [(Ind) ,J* = s2}0° A w2 + s(Ins@?) j° Aw! - s(A - —%\ w? A W?
eb 1. .3
+|A(lna) ,+ e (Ind) o= B(lnc) 4 |w' A @?,

Q% =B(Inba™) ,w' A w?+ {(Inc) oo + [(Inc) 4 ]2} ® A &,

', = A(IncA) ,o° A & + [ + B +(In@) 4(Ind) s J o' A w2,

ebB

Q% =-B(1an),o“’° Aw2+sBu® AW~ s(lnc)’oco’l AW+ [AB— + (lna).o(lnc)_o] w''A W,

Q2 =—B(1nozB).ow° Aw = sBWA w?+ s(Ine) yw' AW - [AB + %? - (lnb)'o(lnc)'o]w2 AW,
Comparison of these expressions with Q% =3 R%,, ,w" A w® yields the curvature tensor components, which,
when substituted in the defining relation
R%=RM g, (A5)

give the Ricci tensor coefficients employed in (3.14).
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